Tags

Type your tag names separated by a space and hit enter

Proprioceptive coordination of movement sequences: role of velocity and position information.
J Neurophysiol. 1994 May; 71(5):1848-61.JN

Abstract

1. Recent studies have shown that the CNS uses proprioceptive information to coordinate multijoint movement sequences; proprioceptive input related to the kinematics of one joint rotation in a movement sequence can be used to trigger a subsequent joint rotation. In this paper we adopt a broad definition of "proprioception," which includes all somatosensory information related to joint posture and kinematics. This paper addresses how the CNS uses proprioceptive information related to the velocity and position of joints to coordinate multijoint movement sequences. 2. Normal human subjects sat at an experimental apparatus and performed a movement sequence with the right arm without visual feedback. The apparatus passively rotated the right elbow horizontally in the extension direction with either a constant velocity trajectory or an unpredictable velocity trajectory. The subjects' task was to open briskly the right hand when the elbow passed through a prescribed target position, similar to backhand throwing in the horizontal plane. The randomization of elbow velocities and the absence of visual information was used to discourage subjects from using any information other than proprioceptive input to perform the task. 3. Our results indicate that the CNS is able to extract the necessary kinematic information from proprioceptive input to trigger the hand opening at the correct elbow position. We estimated the minimal sensory conduction and processing delay to be 150 ms, and on the basis of this estimate, we predicted the expected performance with different degrees of reduced proprioceptive information. These predictions were compared with the subjects' actual performances, revealing that the CNS was using proprioceptive input related to joint velocity in this motor task. To determine whether position information was also being used, we examined the subjects' performances with unpredictable velocity trajectories. The results from experiments with unpredictable velocity trajectories indicate that the CNS extracts proprioceptive information related to both the velocity and the angular position of the joint to trigger the hand movement in this movement sequence. 4. To determine the generality of proprioceptive triggering in movement sequences, we estimated the minimal movement duration with which proprioceptive information can be used as well as the amount of learning required to use proprioceptive input to perform the task. The temporal limits for proprioceptive processing in this movement task were established by determining the minimal movement time during which the task could be performed.(ABSTRACT TRUNCATED AT 400 WORDS)

Authors+Show Affiliations

Robert S. Dow Neurological Sciences Institute, Good Samaritan Hospital and Medical Center, Portland, Oregon 97209.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Clinical Trial
Controlled Clinical Trial
Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

8064352

Citation

Cordo, P, et al. "Proprioceptive Coordination of Movement Sequences: Role of Velocity and Position Information." Journal of Neurophysiology, vol. 71, no. 5, 1994, pp. 1848-61.
Cordo P, Carlton L, Bevan L, et al. Proprioceptive coordination of movement sequences: role of velocity and position information. J Neurophysiol. 1994;71(5):1848-61.
Cordo, P., Carlton, L., Bevan, L., Carlton, M., & Kerr, G. K. (1994). Proprioceptive coordination of movement sequences: role of velocity and position information. Journal of Neurophysiology, 71(5), 1848-61.
Cordo P, et al. Proprioceptive Coordination of Movement Sequences: Role of Velocity and Position Information. J Neurophysiol. 1994;71(5):1848-61. PubMed PMID: 8064352.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Proprioceptive coordination of movement sequences: role of velocity and position information. AU - Cordo,P, AU - Carlton,L, AU - Bevan,L, AU - Carlton,M, AU - Kerr,G K, PY - 1994/5/1/pubmed PY - 1994/5/1/medline PY - 1994/5/1/entrez SP - 1848 EP - 61 JF - Journal of neurophysiology JO - J Neurophysiol VL - 71 IS - 5 N2 - 1. Recent studies have shown that the CNS uses proprioceptive information to coordinate multijoint movement sequences; proprioceptive input related to the kinematics of one joint rotation in a movement sequence can be used to trigger a subsequent joint rotation. In this paper we adopt a broad definition of "proprioception," which includes all somatosensory information related to joint posture and kinematics. This paper addresses how the CNS uses proprioceptive information related to the velocity and position of joints to coordinate multijoint movement sequences. 2. Normal human subjects sat at an experimental apparatus and performed a movement sequence with the right arm without visual feedback. The apparatus passively rotated the right elbow horizontally in the extension direction with either a constant velocity trajectory or an unpredictable velocity trajectory. The subjects' task was to open briskly the right hand when the elbow passed through a prescribed target position, similar to backhand throwing in the horizontal plane. The randomization of elbow velocities and the absence of visual information was used to discourage subjects from using any information other than proprioceptive input to perform the task. 3. Our results indicate that the CNS is able to extract the necessary kinematic information from proprioceptive input to trigger the hand opening at the correct elbow position. We estimated the minimal sensory conduction and processing delay to be 150 ms, and on the basis of this estimate, we predicted the expected performance with different degrees of reduced proprioceptive information. These predictions were compared with the subjects' actual performances, revealing that the CNS was using proprioceptive input related to joint velocity in this motor task. To determine whether position information was also being used, we examined the subjects' performances with unpredictable velocity trajectories. The results from experiments with unpredictable velocity trajectories indicate that the CNS extracts proprioceptive information related to both the velocity and the angular position of the joint to trigger the hand movement in this movement sequence. 4. To determine the generality of proprioceptive triggering in movement sequences, we estimated the minimal movement duration with which proprioceptive information can be used as well as the amount of learning required to use proprioceptive input to perform the task. The temporal limits for proprioceptive processing in this movement task were established by determining the minimal movement time during which the task could be performed.(ABSTRACT TRUNCATED AT 400 WORDS) SN - 0022-3077 UR - https://www.unboundmedicine.com/medline/citation/8064352/Proprioceptive_coordination_of_movement_sequences:_role_of_velocity_and_position_information_ DB - PRIME DP - Unbound Medicine ER -