Tags

Type your tag names separated by a space and hit enter

Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II.
J Biol Chem. 1996 May 03; 271(18):10588-94.JB

Abstract

A prominent model for the mechanism of transcription-coupled DNA repair proposes that an arrested RNA polymerase directs the nucleotide excision repair complex to the transcription-blocking lesion. The specific role for RNA polymerase II in this mechanism can be examined by comparing the extent of polymerase arrest with the extent of transcription-coupled repair for a specific DNA lesion. Previously we reported that a cyclobutane pyrimidine dimer that is repaired preferentially in transcribed genes is a strong block to transcript elongation by RNA pol II (Donahue, B.A., Yin, S., Taylor, J.-S., Reines, D., and Hanawalt, P. C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8502-8506). Here we report the extent of RNA polymerase II arrest by the C-8 guanine DNA adduct formed by N-2-aminofluorene, a lesion that does not appear to be preferentially repaired. Templates for an in vitro transcription assay were constructed with either an N-2-aminofluorene adduct or the helix-distorting N-2-acetylaminofluorene adduct situated at a specific site downstream from the major late promoter of adenovirus. Consistent with the model for transcription-coupled repair, an aminofluorene adduct located on the transcribed strand was a weak pause site for RNA polymerase II. An acetylaminofluorene adduct located on the transcribed strand was an absolute block to transcriptional elongation. Either adduct located on the nontranscribed strand enhanced polymerase arrest at a nearby sequence-specific pause site.

Authors+Show Affiliations

Department of Biological Sciences, Stanford University, California 94305-5020, USA.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

8631860

Citation

Donahue, B A., et al. "Effects of Aminofluorene and Acetylaminofluorene DNA Adducts On Transcriptional Elongation By RNA Polymerase II." The Journal of Biological Chemistry, vol. 271, no. 18, 1996, pp. 10588-94.
Donahue BA, Fuchs RP, Reines D, et al. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J Biol Chem. 1996;271(18):10588-94.
Donahue, B. A., Fuchs, R. P., Reines, D., & Hanawalt, P. C. (1996). Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. The Journal of Biological Chemistry, 271(18), 10588-94.
Donahue BA, et al. Effects of Aminofluorene and Acetylaminofluorene DNA Adducts On Transcriptional Elongation By RNA Polymerase II. J Biol Chem. 1996 May 3;271(18):10588-94. PubMed PMID: 8631860.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. AU - Donahue,B A, AU - Fuchs,R P, AU - Reines,D, AU - Hanawalt,P C, PY - 1996/5/3/pubmed PY - 1996/5/3/medline PY - 1996/5/3/entrez SP - 10588 EP - 94 JF - The Journal of biological chemistry JO - J. Biol. Chem. VL - 271 IS - 18 N2 - A prominent model for the mechanism of transcription-coupled DNA repair proposes that an arrested RNA polymerase directs the nucleotide excision repair complex to the transcription-blocking lesion. The specific role for RNA polymerase II in this mechanism can be examined by comparing the extent of polymerase arrest with the extent of transcription-coupled repair for a specific DNA lesion. Previously we reported that a cyclobutane pyrimidine dimer that is repaired preferentially in transcribed genes is a strong block to transcript elongation by RNA pol II (Donahue, B.A., Yin, S., Taylor, J.-S., Reines, D., and Hanawalt, P. C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8502-8506). Here we report the extent of RNA polymerase II arrest by the C-8 guanine DNA adduct formed by N-2-aminofluorene, a lesion that does not appear to be preferentially repaired. Templates for an in vitro transcription assay were constructed with either an N-2-aminofluorene adduct or the helix-distorting N-2-acetylaminofluorene adduct situated at a specific site downstream from the major late promoter of adenovirus. Consistent with the model for transcription-coupled repair, an aminofluorene adduct located on the transcribed strand was a weak pause site for RNA polymerase II. An acetylaminofluorene adduct located on the transcribed strand was an absolute block to transcriptional elongation. Either adduct located on the nontranscribed strand enhanced polymerase arrest at a nearby sequence-specific pause site. SN - 0021-9258 UR - https://www.unboundmedicine.com/medline/citation/8631860/Effects_of_aminofluorene_and_acetylaminofluorene_DNA_adducts_on_transcriptional_elongation_by_RNA_polymerase_II_ L2 - http://www.jbc.org/cgi/pmidlookup?view=long&pmid=8631860 DB - PRIME DP - Unbound Medicine ER -