Tags

Type your tag names separated by a space and hit enter

Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex.
J Neurophysiol. 1996 Apr; 75(4):1573-88.JN

Abstract

1. Spontaneous inhibitory synaptic currents (sIPSCs) were studied with whole cell voltage-clamp recordings from 131 pyramidal cells in adult rat somatosensory cortical slices. Neurons were intracellulary labeled with biocytin and classified as supragranular (SG, layers 2-3), layer IV (IV), or infragranular (IG, layer V) on the basis of the laminar localization of their somata. Somatic areas were similar for SG, IV, and IG neurons. All identified pyramidal cells generated high-frequency gamma-aminobutyric acid (GABAA) receptor-mediated synaptic events. 2. Bath application of bicuculline blocked the sIPSCs and resulted in a decrease of approximately 0.5 nS in resting conductance and an inward shift in baseline current. 3. sIPSC frequency was significantly lower in SG versus IG or IV neurons, and this difference was accounted for by the occurrence of a higher percentage of bursts of sIPSCs in the IG and IV neurons. 4. Bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased the frequency of sIPSCs by 13-21%. By contrast, application of the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (D-AP5) generally had no effect on spontaneous IPSC frequency, suggesting that AMPA rather than NMDA receptor activation contributed to resting discharge of inhibitory interneurons. 5. Addition of tetrodotoxin (TTX) to the perfusion medium reduced the spontaneous IPSC frequency by approximately 30-55%. The miniature IPSCs (mIPSCs) seen in TTX-containing solutions had a frequency of approximately 10 Hz and an average conductance of 0.42-0.48 nS. 6. The kinetic properties of mIPSCs generated in pyramidal cells of different layers were the same, with the rise times of approximately 0.9 ms and decay time constants of approximately 8 ms at a holding potential of 0 mV. The decay phase of mIPSCs was generally fitted by one exponential and displayed a voltage dependence with an e-fold increase in decay time constant for a every 198-mV depolarization. 7. These results show that there is ongoing spontaneous release of GABA in neocortical slices that gives rise to high-frequency impulse-related and non-impulse-related postsynaptic inhibitory currents. Activation of AMPA receptors on inhibitory interneurons accounts for only a small proportion of the GABAA receptor-mediated events. Judging from the distribution of mIPSC frequencies in neurons of different laminae, there is a relatively uniform distribution of inhibitory synapses throughout the cortex. Tonic activation of GABAA receptors on neocortical pyramidal neurons generates an increase in resting membrane conductance that may play an important role in vivo by preventing the development of hyperexcitability, modulating excitatory synaptic events, and controlling the rate and patterns of spike discharge.

Authors+Show Affiliations

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, California 94305-5300, USA.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

8727397

Citation

Salin, P A., and D A. Prince. "Spontaneous GABAA Receptor-mediated Inhibitory Currents in Adult Rat Somatosensory Cortex." Journal of Neurophysiology, vol. 75, no. 4, 1996, pp. 1573-88.
Salin PA, Prince DA. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol. 1996;75(4):1573-88.
Salin, P. A., & Prince, D. A. (1996). Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. Journal of Neurophysiology, 75(4), 1573-88.
Salin PA, Prince DA. Spontaneous GABAA Receptor-mediated Inhibitory Currents in Adult Rat Somatosensory Cortex. J Neurophysiol. 1996;75(4):1573-88. PubMed PMID: 8727397.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. AU - Salin,P A, AU - Prince,D A, PY - 1996/4/1/pubmed PY - 1996/4/1/medline PY - 1996/4/1/entrez SP - 1573 EP - 88 JF - Journal of neurophysiology JO - J Neurophysiol VL - 75 IS - 4 N2 - 1. Spontaneous inhibitory synaptic currents (sIPSCs) were studied with whole cell voltage-clamp recordings from 131 pyramidal cells in adult rat somatosensory cortical slices. Neurons were intracellulary labeled with biocytin and classified as supragranular (SG, layers 2-3), layer IV (IV), or infragranular (IG, layer V) on the basis of the laminar localization of their somata. Somatic areas were similar for SG, IV, and IG neurons. All identified pyramidal cells generated high-frequency gamma-aminobutyric acid (GABAA) receptor-mediated synaptic events. 2. Bath application of bicuculline blocked the sIPSCs and resulted in a decrease of approximately 0.5 nS in resting conductance and an inward shift in baseline current. 3. sIPSC frequency was significantly lower in SG versus IG or IV neurons, and this difference was accounted for by the occurrence of a higher percentage of bursts of sIPSCs in the IG and IV neurons. 4. Bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased the frequency of sIPSCs by 13-21%. By contrast, application of the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (D-AP5) generally had no effect on spontaneous IPSC frequency, suggesting that AMPA rather than NMDA receptor activation contributed to resting discharge of inhibitory interneurons. 5. Addition of tetrodotoxin (TTX) to the perfusion medium reduced the spontaneous IPSC frequency by approximately 30-55%. The miniature IPSCs (mIPSCs) seen in TTX-containing solutions had a frequency of approximately 10 Hz and an average conductance of 0.42-0.48 nS. 6. The kinetic properties of mIPSCs generated in pyramidal cells of different layers were the same, with the rise times of approximately 0.9 ms and decay time constants of approximately 8 ms at a holding potential of 0 mV. The decay phase of mIPSCs was generally fitted by one exponential and displayed a voltage dependence with an e-fold increase in decay time constant for a every 198-mV depolarization. 7. These results show that there is ongoing spontaneous release of GABA in neocortical slices that gives rise to high-frequency impulse-related and non-impulse-related postsynaptic inhibitory currents. Activation of AMPA receptors on inhibitory interneurons accounts for only a small proportion of the GABAA receptor-mediated events. Judging from the distribution of mIPSC frequencies in neurons of different laminae, there is a relatively uniform distribution of inhibitory synapses throughout the cortex. Tonic activation of GABAA receptors on neocortical pyramidal neurons generates an increase in resting membrane conductance that may play an important role in vivo by preventing the development of hyperexcitability, modulating excitatory synaptic events, and controlling the rate and patterns of spike discharge. SN - 0022-3077 UR - https://www.unboundmedicine.com/medline/citation/8727397/Spontaneous_GABAA_receptor_mediated_inhibitory_currents_in_adult_rat_somatosensory_cortex_ L2 - https://journals.physiology.org/doi/10.1152/jn.1996.75.4.1573?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -