Tags

Type your tag names separated by a space and hit enter

The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast.
Genes Dev. 1996 Sep 15; 10(18):2289-301.GD

Abstract

The atf1+ gene of Schizosaccharomyces pombe encodes a bZIP transcription factor with strong homology to the mammalian factor ATF-2. ATF-2 is regulated through phosphorylation in mammalian cells by the stress-activated mitogen-activated protein (MAP) kinases SAPK/JNK and p38. We show here that the fission yeast Atf1 factor is also regulated by a stress-activated kinase, Sty1. The Sty1 kinase is stimulated by a variety of different stress conditions including osmotic and oxidative stress and heat shock. Deletion of the atf1+ gene results in many, but not all, of the phenotypes associated with loss of Sty1, including sensitivity to environmental stress and inability to undergo sexual conjugation. Furthermore, we identify a number of target genes that are induced rapidly in a manner dependent upon both the Sty1 kinase and the Atf1 transcription factor. These genes include gpd1+, which is important for the response of cells to osmotic stress, the catalase gene lambda important for cells to combat oxidative stress, and pyp2+, which encodes a tyrosine-specific MAP kinase phosphatase. Induction of Pyp2 by Atf1 is direct in that it does not require de novo protein synthesis and results in a negative feedback loop that serves to control signaling through the Sty1/Wis1 pathway. We show that Atf1 associates stably and is phosphorylated by the Sty1 kinase in vitro. Taken together, these results indicate that the interaction between AM and Sty1 is direct. These findings highlight a remarkable level of conservation in transcriptional control by stress-activated MAP kinase pathways between fission yeast and mammalian cells.

Authors+Show Affiliations

Division of Yeast Genetics, National Institute for Medical Research, London, UK.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

8824588

Citation

Wilkinson, M G., et al. "The Atf1 Transcription Factor Is a Target for the Sty1 Stress-activated MAP Kinase Pathway in Fission Yeast." Genes & Development, vol. 10, no. 18, 1996, pp. 2289-301.
Wilkinson MG, Samuels M, Takeda T, et al. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 1996;10(18):2289-301.
Wilkinson, M. G., Samuels, M., Takeda, T., Toone, W. M., Shieh, J. C., Toda, T., Millar, J. B., & Jones, N. (1996). The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes & Development, 10(18), 2289-301.
Wilkinson MG, et al. The Atf1 Transcription Factor Is a Target for the Sty1 Stress-activated MAP Kinase Pathway in Fission Yeast. Genes Dev. 1996 Sep 15;10(18):2289-301. PubMed PMID: 8824588.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. AU - Wilkinson,M G, AU - Samuels,M, AU - Takeda,T, AU - Toone,W M, AU - Shieh,J C, AU - Toda,T, AU - Millar,J B, AU - Jones,N, PY - 1996/9/15/pubmed PY - 1996/9/15/medline PY - 1996/9/15/entrez SP - 2289 EP - 301 JF - Genes & development JO - Genes Dev VL - 10 IS - 18 N2 - The atf1+ gene of Schizosaccharomyces pombe encodes a bZIP transcription factor with strong homology to the mammalian factor ATF-2. ATF-2 is regulated through phosphorylation in mammalian cells by the stress-activated mitogen-activated protein (MAP) kinases SAPK/JNK and p38. We show here that the fission yeast Atf1 factor is also regulated by a stress-activated kinase, Sty1. The Sty1 kinase is stimulated by a variety of different stress conditions including osmotic and oxidative stress and heat shock. Deletion of the atf1+ gene results in many, but not all, of the phenotypes associated with loss of Sty1, including sensitivity to environmental stress and inability to undergo sexual conjugation. Furthermore, we identify a number of target genes that are induced rapidly in a manner dependent upon both the Sty1 kinase and the Atf1 transcription factor. These genes include gpd1+, which is important for the response of cells to osmotic stress, the catalase gene lambda important for cells to combat oxidative stress, and pyp2+, which encodes a tyrosine-specific MAP kinase phosphatase. Induction of Pyp2 by Atf1 is direct in that it does not require de novo protein synthesis and results in a negative feedback loop that serves to control signaling through the Sty1/Wis1 pathway. We show that Atf1 associates stably and is phosphorylated by the Sty1 kinase in vitro. Taken together, these results indicate that the interaction between AM and Sty1 is direct. These findings highlight a remarkable level of conservation in transcriptional control by stress-activated MAP kinase pathways between fission yeast and mammalian cells. SN - 0890-9369 UR - https://www.unboundmedicine.com/medline/citation/8824588/The_Atf1_transcription_factor_is_a_target_for_the_Sty1_stress_activated_MAP_kinase_pathway_in_fission_yeast_ L2 - http://www.genesdev.org/cgi/pmidlookup?view=long&pmid=8824588 DB - PRIME DP - Unbound Medicine ER -