Abstract
Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folic acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor beta, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs.
Pub Type(s)
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
TY - JOUR
T1 - Inositol prevents folate-resistant neural tube defects in the mouse.
AU - Greene,N D,
AU - Copp,A J,
PY - 1997/1/1/pubmed
PY - 1997/1/1/medline
PY - 1997/1/1/entrez
SP - 60
EP - 6
JF - Nature medicine
JO - Nat Med
VL - 3
IS - 1
N2 - Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folic acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor beta, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs.
SN - 1078-8956
UR - https://www.unboundmedicine.com/medline/citation/8986742/Inositol_prevents_folate_resistant_neural_tube_defects_in_the_mouse_
DB - PRIME
DP - Unbound Medicine
ER -