Tags

Type your tag names separated by a space and hit enter

A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells.
Clin Exp Allergy. 1996 Dec; 26(12):1449-60.CE

Abstract

BACKGROUND

A circulating inhibitor of the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme has been described in allergic subjects. Recent studies have suggested that the Na+,K+ ATPase, enzyme may be involved in the signal transduction pathways of various cell types and that inhibition of its activity can modulate histamine release from basophils and mast cells.

OBJECTIVE

The purpose of this study was to determine if modulation of Na+,K+ ATPase activity alters degranulation in the 2H3 subline of rat basophilic leukaemia cells (RBL-2H3), a mucosal mast cell model bearing high-affinity Fc receptors for IgE.

METHODS

Degranulation was measured by the release of both exogenous serotonin and endogenous histamine. Na+,K+ ATPase activity was assessed by ouabain-sensitive [86rubidium] uptake ([86Rb] uptake) and ex situ enzyme activity.

RESULTS

Ouabain-sensitive [86Rb] uptake and degranulation increased in parallel and in a dose-response fashion with increasing Fc receptor cross-linking. Additionally, incubation with ouabain, a known inhibitor of Na+,K+ ATPase activity, decreased both anti-IgE and calcium ionophore-induced degranulation, but increased spontaneous degranulation, each in a dose-response manner. Moreover, the effect of ouabain on degranulation was reversed by rinsing and mimicked by other known inhibitors of Na+,K+ ATPase activity. Finally, in the absence of anti-IgE or calcium ionophore, stimulation of ouabain-sensitive [86Rb] uptake by the sodium (Na+) ionophore monensin was associated with a corresponding dose-response increase in ouabain-sensitive degranulation. These experiments demonstrate that ouabain-sensitive [86Rb] uptake increases following IgE receptor cross-linking in RBL-2H3, and that factors which modulate Na+,K+ ATPase activity in these cells may also regulate degranulation.

CONCLUSION

The results of this study suggest an important role for Na+,K+ ATPase activation in the signal transduction pathway of stimulated RBL-2H3.

Authors+Show Affiliations

Department of Pediatrics, School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh, PA 15213, USA.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

9027446

Citation

Gentile, D A., and D P. Skoner. "A Role for the Sodium, Potassium Adenosine Triphosphatase (Na+,K+ ATPase) Enzyme in Degranulation of Rat Basophilic Leukaemia Cells." Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology, vol. 26, no. 12, 1996, pp. 1449-60.
Gentile DA, Skoner DP. A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells. Clin Exp Allergy. 1996;26(12):1449-60.
Gentile, D. A., & Skoner, D. P. (1996). A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology, 26(12), 1449-60.
Gentile DA, Skoner DP. A Role for the Sodium, Potassium Adenosine Triphosphatase (Na+,K+ ATPase) Enzyme in Degranulation of Rat Basophilic Leukaemia Cells. Clin Exp Allergy. 1996;26(12):1449-60. PubMed PMID: 9027446.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells. AU - Gentile,D A, AU - Skoner,D P, PY - 1996/12/1/pubmed PY - 1996/12/1/medline PY - 1996/12/1/entrez SP - 1449 EP - 60 JF - Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology JO - Clin Exp Allergy VL - 26 IS - 12 N2 - BACKGROUND: A circulating inhibitor of the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme has been described in allergic subjects. Recent studies have suggested that the Na+,K+ ATPase, enzyme may be involved in the signal transduction pathways of various cell types and that inhibition of its activity can modulate histamine release from basophils and mast cells. OBJECTIVE: The purpose of this study was to determine if modulation of Na+,K+ ATPase activity alters degranulation in the 2H3 subline of rat basophilic leukaemia cells (RBL-2H3), a mucosal mast cell model bearing high-affinity Fc receptors for IgE. METHODS: Degranulation was measured by the release of both exogenous serotonin and endogenous histamine. Na+,K+ ATPase activity was assessed by ouabain-sensitive [86rubidium] uptake ([86Rb] uptake) and ex situ enzyme activity. RESULTS: Ouabain-sensitive [86Rb] uptake and degranulation increased in parallel and in a dose-response fashion with increasing Fc receptor cross-linking. Additionally, incubation with ouabain, a known inhibitor of Na+,K+ ATPase activity, decreased both anti-IgE and calcium ionophore-induced degranulation, but increased spontaneous degranulation, each in a dose-response manner. Moreover, the effect of ouabain on degranulation was reversed by rinsing and mimicked by other known inhibitors of Na+,K+ ATPase activity. Finally, in the absence of anti-IgE or calcium ionophore, stimulation of ouabain-sensitive [86Rb] uptake by the sodium (Na+) ionophore monensin was associated with a corresponding dose-response increase in ouabain-sensitive degranulation. These experiments demonstrate that ouabain-sensitive [86Rb] uptake increases following IgE receptor cross-linking in RBL-2H3, and that factors which modulate Na+,K+ ATPase activity in these cells may also regulate degranulation. CONCLUSION: The results of this study suggest an important role for Na+,K+ ATPase activation in the signal transduction pathway of stimulated RBL-2H3. SN - 0954-7894 UR - https://www.unboundmedicine.com/medline/citation/9027446/A_role_for_the_sodium_potassium_adenosine_triphosphatase__Na+K+_ATPase__enzyme_in_degranulation_of_rat_basophilic_leukaemia_cells_ DB - PRIME DP - Unbound Medicine ER -