Tags

Type your tag names separated by a space and hit enter

Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing mono-oxygenases: studies with S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine.
Mol Pharmacol. 1997 Mar; 51(3):507-15.MP

Abstract

Rabbit liver microsomes catalyzed the highly stereoselective, NADPH- and time-dependent S-oxidation of S-benzyl-L-cysteine (SBC), S-allyl-L-cysteine (SAC), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) to their respective sulfoxides. Methimazole, a flavin-containing mono-oxygenase (FMO) substrate, inhibited S-oxidation of all four conjugates. The cytochrome P450 inhibitor 1-benzylimidazole did not affect SAC, SBC, or DCVC S-oxidation but inhibited the S-oxidation of TCVC. Solubilization of microsomes also inhibited TCVC activity, whereas SBC, SAC, and DCVC activities were not affected. Because these results suggested that FMOs were the major catalysts of SBC, SAC, and DCVC sulfoxidations, the four conjugates were evaluated as substrates for cDNA-expressed rabbit FMO isoforms FMO1, FMO2, FMO3, and FMO5. At equimolar concentrations (10 mM), FMO1 S-oxidized SBC and SAC, but no sulfoxides were detected with DCVC or TCVC. FMO3 S-oxidized all four conjugates. Km values determined with FMO3 were comparable to Km values from rabbit liver microsomes. S-Oxidation by FMO2 was detected only with SAC, and no sulfoxides were detected in incubations with FMO5. These results show that FMO isoforms can catalyze cysteine conjugate S-oxidation and that the specific isoform involved depends on the structure of the cysteine conjugate. The cysteine conjugates with more nucleophilic sulfur atoms, SAC and SBC, were much better FMO substrates than those having the less nucleophilic sulfur atoms DCVC and TCVC. The sulfoxides of TCVC and DCVC were reactive toward GSH, whereas the sulfoxides of SBC and SAC were not reactive. These results provide evidence for different chemical reactivities of these sulfoxides.

Authors+Show Affiliations

Department of Comparative Biosciences and Environmental Toxicology Center, University of Wisconsin, Madison 53706, USA.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

9058607

Citation

Ripp, S L., et al. "Oxidation of Cysteine S-conjugates By Rabbit Liver Microsomes and cDNA-expressed Flavin-containing Mono-oxygenases: Studies With S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine." Molecular Pharmacology, vol. 51, no. 3, 1997, pp. 507-15.
Ripp SL, Overby LH, Philpot RM, et al. Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing mono-oxygenases: studies with S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine. Mol Pharmacol. 1997;51(3):507-15.
Ripp, S. L., Overby, L. H., Philpot, R. M., & Elfarra, A. A. (1997). Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing mono-oxygenases: studies with S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine. Molecular Pharmacology, 51(3), 507-15.
Ripp SL, et al. Oxidation of Cysteine S-conjugates By Rabbit Liver Microsomes and cDNA-expressed Flavin-containing Mono-oxygenases: Studies With S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine. Mol Pharmacol. 1997;51(3):507-15. PubMed PMID: 9058607.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing mono-oxygenases: studies with S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine. AU - Ripp,S L, AU - Overby,L H, AU - Philpot,R M, AU - Elfarra,A A, PY - 1997/3/1/pubmed PY - 1997/3/1/medline PY - 1997/3/1/entrez SP - 507 EP - 15 JF - Molecular pharmacology JO - Mol Pharmacol VL - 51 IS - 3 N2 - Rabbit liver microsomes catalyzed the highly stereoselective, NADPH- and time-dependent S-oxidation of S-benzyl-L-cysteine (SBC), S-allyl-L-cysteine (SAC), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) to their respective sulfoxides. Methimazole, a flavin-containing mono-oxygenase (FMO) substrate, inhibited S-oxidation of all four conjugates. The cytochrome P450 inhibitor 1-benzylimidazole did not affect SAC, SBC, or DCVC S-oxidation but inhibited the S-oxidation of TCVC. Solubilization of microsomes also inhibited TCVC activity, whereas SBC, SAC, and DCVC activities were not affected. Because these results suggested that FMOs were the major catalysts of SBC, SAC, and DCVC sulfoxidations, the four conjugates were evaluated as substrates for cDNA-expressed rabbit FMO isoforms FMO1, FMO2, FMO3, and FMO5. At equimolar concentrations (10 mM), FMO1 S-oxidized SBC and SAC, but no sulfoxides were detected with DCVC or TCVC. FMO3 S-oxidized all four conjugates. Km values determined with FMO3 were comparable to Km values from rabbit liver microsomes. S-Oxidation by FMO2 was detected only with SAC, and no sulfoxides were detected in incubations with FMO5. These results show that FMO isoforms can catalyze cysteine conjugate S-oxidation and that the specific isoform involved depends on the structure of the cysteine conjugate. The cysteine conjugates with more nucleophilic sulfur atoms, SAC and SBC, were much better FMO substrates than those having the less nucleophilic sulfur atoms DCVC and TCVC. The sulfoxides of TCVC and DCVC were reactive toward GSH, whereas the sulfoxides of SBC and SAC were not reactive. These results provide evidence for different chemical reactivities of these sulfoxides. SN - 0026-895X UR - https://www.unboundmedicine.com/medline/citation/9058607/Oxidation_of_cysteine_S_conjugates_by_rabbit_liver_microsomes_and_cDNA_expressed_flavin_containing_mono_oxygenases:_studies_with_S__12_dichlorovinyl__L_cysteine_S__122_trichlorovinyl__L_cysteine_S_allyl_L_cysteine_and_S_benzyl_L_cysteine_ L2 - http://molpharm.aspetjournals.org/cgi/pmidlookup?view=long&pmid=9058607 DB - PRIME DP - Unbound Medicine ER -