Tags

Type your tag names separated by a space and hit enter

Does weight-bearing exercise protect against the effects of exercise-induced oligomenorrhea on bone density?
Osteoporos Int. 1996; 6(6):448-52.OI

Abstract

Does weight-bearing exercise offset bone loss associated with oligomenorrhea? If so, bone mineral density (BMD) will be stable at weight bearing sites but decrease at non-weight-bearing sites with increasing duration of oligomenorrhea. To test this hypothesis, BMD (g/cm2), was measured by dual-energy X-ray absorptiometry in 41 oligomenorrheic ballet dancers aged 17.7 +/- 0.2 years (mean +/- SEM) and 46 age-matched controls with normal menstrual function. BMD correlated negatively with the duration of oligomenorrhea at weight-bearing and non-weight-bearing sites (femoral neck, r = -0.33, p < 0.05; Ward's triangle, r = -0.29, p = 0.06; trochanter, r = -0.33, p < 0.05; lumber spine, r = -0.25, p = 0.1; skull, r = -0.29, p = 0.06; arms, r = -0.32, p < 0.05; ribs, r = -0.30, p = 0.06). The slopes of the regression of BMD on duration of oligomenorrhea were greater at the proximal femur (trochanter, -0.28 +/- 0.13, femoral neck, -0.24 +/- 0.11; Ward's triangle, -0.29 +/- 0.15) than the skull (-0.15 +/- 0.08, p < 0.05, p < 0.1, p < 0.1 respectively). The slopes at the trochanter and femoral neck were also greater than at the ribs (-0.10 +/- 0.05; both p < 0.1). In the dancers with oligomenorrhea of less than 40 months duration, BMD was higher than the age-predicted mean at weight-bearing sites (except the lumber spine), but not at non-weight-bearing sites (femoral neck, 9.1 +/- 3.4%; Ward's triangle, 10.0 +/- 1.7%; trochanter, 9.4 +/- 4.1%, all p < 0.05; lumbar spine, -2.1 +/- 2.7%, NS; skull, -2.5 +/- 2.1%, NS; ribs, -3.0 +/- 1.6% NS; arms, -3.9 +/- 1.6%; p < 0.05). In the dancers with greater than 40 months oligomenorrhea, BMD was no higher than the age predicted mean, at the weight bearing sites, and was lower at non-weight bearing sites (femoral neck, 4.3 +/- 2.3%, NS; Ward's triangle, 3.5 +/- 3.2%, NS; trochanter, 2.1 +/- 2.7%, NS; lumbar spine, -3.8 +/- 2.1%, NS; arms, -7.5 +/- 0.8%, p < 0.05; skull, -6.2 +/- 1.8%, p < 0.01; ribs, -5.4 +/- 1.1%, p < 0.0001). In conclusion, weight-bearing exercise is unlikely to offset the deleterious effects of oligomenorrhea. Bone loss appears to occur at all sites but may begin from a higher level at weight-bearing sites and may proceed more rapidly.

Authors+Show Affiliations

Department of Endocrinology, Austin and Repatriation Medical Centre, University of Melbourne, Victoria, Australia.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article

Language

eng

PubMed ID

9116390

Citation

Pearce, G, et al. "Does Weight-bearing Exercise Protect Against the Effects of Exercise-induced Oligomenorrhea On Bone Density?" Osteoporosis International : a Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, vol. 6, no. 6, 1996, pp. 448-52.
Pearce G, Bass S, Young N, et al. Does weight-bearing exercise protect against the effects of exercise-induced oligomenorrhea on bone density? Osteoporos Int. 1996;6(6):448-52.
Pearce, G., Bass, S., Young, N., Formica, C., & Seeman, E. (1996). Does weight-bearing exercise protect against the effects of exercise-induced oligomenorrhea on bone density? Osteoporosis International : a Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 6(6), 448-52.
Pearce G, et al. Does Weight-bearing Exercise Protect Against the Effects of Exercise-induced Oligomenorrhea On Bone Density. Osteoporos Int. 1996;6(6):448-52. PubMed PMID: 9116390.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Does weight-bearing exercise protect against the effects of exercise-induced oligomenorrhea on bone density? AU - Pearce,G, AU - Bass,S, AU - Young,N, AU - Formica,C, AU - Seeman,E, PY - 1996/1/1/pubmed PY - 1996/1/1/medline PY - 1996/1/1/entrez SP - 448 EP - 52 JF - Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA JO - Osteoporos Int VL - 6 IS - 6 N2 - Does weight-bearing exercise offset bone loss associated with oligomenorrhea? If so, bone mineral density (BMD) will be stable at weight bearing sites but decrease at non-weight-bearing sites with increasing duration of oligomenorrhea. To test this hypothesis, BMD (g/cm2), was measured by dual-energy X-ray absorptiometry in 41 oligomenorrheic ballet dancers aged 17.7 +/- 0.2 years (mean +/- SEM) and 46 age-matched controls with normal menstrual function. BMD correlated negatively with the duration of oligomenorrhea at weight-bearing and non-weight-bearing sites (femoral neck, r = -0.33, p < 0.05; Ward's triangle, r = -0.29, p = 0.06; trochanter, r = -0.33, p < 0.05; lumber spine, r = -0.25, p = 0.1; skull, r = -0.29, p = 0.06; arms, r = -0.32, p < 0.05; ribs, r = -0.30, p = 0.06). The slopes of the regression of BMD on duration of oligomenorrhea were greater at the proximal femur (trochanter, -0.28 +/- 0.13, femoral neck, -0.24 +/- 0.11; Ward's triangle, -0.29 +/- 0.15) than the skull (-0.15 +/- 0.08, p < 0.05, p < 0.1, p < 0.1 respectively). The slopes at the trochanter and femoral neck were also greater than at the ribs (-0.10 +/- 0.05; both p < 0.1). In the dancers with oligomenorrhea of less than 40 months duration, BMD was higher than the age-predicted mean at weight-bearing sites (except the lumber spine), but not at non-weight-bearing sites (femoral neck, 9.1 +/- 3.4%; Ward's triangle, 10.0 +/- 1.7%; trochanter, 9.4 +/- 4.1%, all p < 0.05; lumbar spine, -2.1 +/- 2.7%, NS; skull, -2.5 +/- 2.1%, NS; ribs, -3.0 +/- 1.6% NS; arms, -3.9 +/- 1.6%; p < 0.05). In the dancers with greater than 40 months oligomenorrhea, BMD was no higher than the age predicted mean, at the weight bearing sites, and was lower at non-weight bearing sites (femoral neck, 4.3 +/- 2.3%, NS; Ward's triangle, 3.5 +/- 3.2%, NS; trochanter, 2.1 +/- 2.7%, NS; lumbar spine, -3.8 +/- 2.1%, NS; arms, -7.5 +/- 0.8%, p < 0.05; skull, -6.2 +/- 1.8%, p < 0.01; ribs, -5.4 +/- 1.1%, p < 0.0001). In conclusion, weight-bearing exercise is unlikely to offset the deleterious effects of oligomenorrhea. Bone loss appears to occur at all sites but may begin from a higher level at weight-bearing sites and may proceed more rapidly. SN - 0937-941X UR - https://www.unboundmedicine.com/medline/citation/9116390/Does_weight_bearing_exercise_protect_against_the_effects_of_exercise_induced_oligomenorrhea_on_bone_density L2 - https://doi.org/10.1007/BF01629577 DB - PRIME DP - Unbound Medicine ER -