Tags

Type your tag names separated by a space and hit enter

Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite.
Arch Biochem Biophys. 1997 Sep 01; 345(1):160-70.AB

Abstract

We have examined the formation of hydroxyphenols, nitrophenols, and the minor products 4-nitrosophenol, benzoquinone, 2,2'-biphenol, and 4,4'-biphenol from the reaction of peroxynitrite with phenol in the presence and absence of added carbonate. In the absence of added carbonate, the product yields of nitrophenols and hydroxyphenols have different pH profiles. The rates of nitration and hydroxylation also have different pH profiles and match the trends observed for the product yields. At a given pH, the sum of the rate constants for nitration and hydroxylation is nearly identical to the rate constant for the spontaneous decomposition of peroxynitrite. The reaction of peroxynitrite with phenol is zero-order in phenol, both in the presence and absence of added carbonate. In the presence of added carbonate, hydroxylation is inhibited, whereas the rate of formation and yield of nitrophenols increase. The combined maximum yield of o- and p-nitrophenols is 20 mol% (based on the initial concentration of peroxynitrite) and is about fourfold higher than the maximal yield obtained in the absence of added carbonate. The o/p ratio of nitrophenols is the same in the presence and absence of added carbonate. These results demonstrate that hydroxylation and nitration occur via two different intermediates. We suggest that the activated intermediate formed in the isomerization of peroxynitrous acid to nitrate, ONOOH*, is the hydroxylating species. We propose that intermediate 1, O=N-OO-CO2-, or secondary products derived from it, is (are) responsible for the nitration of phenol. The possible mechanisms responsible for nitration are discussed.

Authors+Show Affiliations

The Biodynamics Institute, Louisiana State University, Baton Rouge, Louisiana 70803-1800, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

9281324

Citation

Lemercier, J N., et al. "Carbon Dioxide Modulation of Hydroxylation and Nitration of Phenol By Peroxynitrite." Archives of Biochemistry and Biophysics, vol. 345, no. 1, 1997, pp. 160-70.
Lemercier JN, Padmaja S, Cueto R, et al. Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite. Arch Biochem Biophys. 1997;345(1):160-70.
Lemercier, J. N., Padmaja, S., Cueto, R., Squadrito, G. L., Uppu, R. M., & Pryor, W. A. (1997). Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite. Archives of Biochemistry and Biophysics, 345(1), 160-70.
Lemercier JN, et al. Carbon Dioxide Modulation of Hydroxylation and Nitration of Phenol By Peroxynitrite. Arch Biochem Biophys. 1997 Sep 1;345(1):160-70. PubMed PMID: 9281324.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite. AU - Lemercier,J N, AU - Padmaja,S, AU - Cueto,R, AU - Squadrito,G L, AU - Uppu,R M, AU - Pryor,W A, PY - 1997/9/1/pubmed PY - 1997/9/1/medline PY - 1997/9/1/entrez SP - 160 EP - 70 JF - Archives of biochemistry and biophysics JO - Arch Biochem Biophys VL - 345 IS - 1 N2 - We have examined the formation of hydroxyphenols, nitrophenols, and the minor products 4-nitrosophenol, benzoquinone, 2,2'-biphenol, and 4,4'-biphenol from the reaction of peroxynitrite with phenol in the presence and absence of added carbonate. In the absence of added carbonate, the product yields of nitrophenols and hydroxyphenols have different pH profiles. The rates of nitration and hydroxylation also have different pH profiles and match the trends observed for the product yields. At a given pH, the sum of the rate constants for nitration and hydroxylation is nearly identical to the rate constant for the spontaneous decomposition of peroxynitrite. The reaction of peroxynitrite with phenol is zero-order in phenol, both in the presence and absence of added carbonate. In the presence of added carbonate, hydroxylation is inhibited, whereas the rate of formation and yield of nitrophenols increase. The combined maximum yield of o- and p-nitrophenols is 20 mol% (based on the initial concentration of peroxynitrite) and is about fourfold higher than the maximal yield obtained in the absence of added carbonate. The o/p ratio of nitrophenols is the same in the presence and absence of added carbonate. These results demonstrate that hydroxylation and nitration occur via two different intermediates. We suggest that the activated intermediate formed in the isomerization of peroxynitrous acid to nitrate, ONOOH*, is the hydroxylating species. We propose that intermediate 1, O=N-OO-CO2-, or secondary products derived from it, is (are) responsible for the nitration of phenol. The possible mechanisms responsible for nitration are discussed. SN - 0003-9861 UR - https://www.unboundmedicine.com/medline/citation/9281324/Carbon_dioxide_modulation_of_hydroxylation_and_nitration_of_phenol_by_peroxynitrite_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0003-9861(97)90240-X DB - PRIME DP - Unbound Medicine ER -