Neuropeptide Y release from cultured hippocampal neurons: stimulation by glutamate acting at N-methyl-D-aspartate and AMPA receptors.Neuroscience. 1997 Nov; 81(1):23-31.N
L-Glutamate, N-methyl-D-aspartate, DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate increased the release of neuropeptide Y-like immunoreactivity from primary cultures of rat hippocampal neurons incubated in Mg2+(1.2 mM)-containing medium. The neuropeptide Y-like immunoreactivity released by 100 microM glutamate was mainly accounted for by neuropeptide Y (1-36), but consisted in part (about 20%) of peptide YY. The effect of 100 microM glutamate on neuropeptide Y-like immunoreactivity release was largely (about 70%) prevented by the N-methyl-D-aspartate receptor antagonist dizocilpine maleate (10 microM), while the remainder (about 30%) was sensitive to the AMPA/ kainate receptor antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (10 microM). The AMPA(100 microM)-evoked release of neuropeptide Y-like immunoreactivity was strongly antagonized by 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione and by 1-aminophenyl-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine, but it was in part (15-20%) sensitive to dizocilpine. The releases of neuropeptide Y-like immunoreactivity elicited by glutamate, N-methyl-D-aspartate, AMPA and kainate were all strongly Ca(2+)-dependent. Tetrodotoxin (1 microM) abrogated the N-methyl-D-aspartate-evoked release and partly inhibited the release caused by glutamate, but did not modify significantly AMPA- or kainate-evoked release. Removal of Mg2+ from the medium caused increase of neuropeptide Y-like immunoreactivity release, an effect prevented by dizocilpine maleate or 7-Cl-kynurenate. Cyclothiazide (10 microM), a drug known to prevent AMPA receptor desensitization, enhanced the neuropeptide Y-like immunoreactivity release elicited by 100 microM AMPA, but not that caused by 100 microM kainate. However, when used at a lower concentration (50 microM), kainate elicited a response that was potentiated significantly by cyclothiazide. It is concluded that glutamate can stimulate Ca(2+)-dependent release of neuropeptide Y from hippocampal neurons mainly through N-methyl-D-aspartate receptors and, less so, by activating cyclothiazide-sensitive receptors of the AMPA-preferring type.