Tags

Type your tag names separated by a space and hit enter

Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo.
J Bone Miner Res 1997; 12(12):2040-9JB

Abstract

Although the precise mechanisms of the conversion of predentin to dentin are not well understood, several lines of evidence implicate the noncollagenous proteins (NCPs) as important regulators of dentin biomineralization. Here we compared the in vivo temporospatial expression patterns of two dentin NCP genes, dentin matrix protein 1 (Dmp1), and dentin sialophosphoprotein (DSPP) in developing molars. Reverse transcription-polymerase chain reaction was performed on embryonic day 13 to 1-day-old first molars using Dmp1- and DSPP-specific primer sets. Dmp1 transcripts appeared at the late bud stage, while DSPP mRNA was seen at the cap stage. Expression of both genes was sustained throughout odontogenesis. In situ hybridization analysis revealed interesting differences in the expression patterns of these genes. While Dmp1 and DSPP showed coexpression in young odontoblasts before the start of mineralization, the expression of these genes was notably distinct at later stages. Dmp1 expression decreased in secretory odontoblasts after the appearance of mineral, while high levels of DSPP were sustained in odontoblasts. In early secretory ameloblasts, DSPP expression was transient and down-regulated with the appearance ofdentin matrix. Interestingly, Dmp1 expression became evident in ameloblasts during the maturative phase of amelogenesis. In contrast to Dspp expression that was tooth-specific, Dmp1 was expressed by osteoblasts throughout ossification in the skeleton. Probes directed to the "DSP" and "DPP" regions of the DSPP gene showed identical patterns of mRNA expression. These data show that the developmental expression patterns of Dmp1 and DSPP are distinct, implying that these molecules serve different biological functions in vivo.

Authors+Show Affiliations

Department of Basic Sciences, Dental Branch, University of Texas Houston Health Science Center 77030, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

9421236

Citation

D'Souza, R N., et al. "Gene Expression Patterns of Murine Dentin Matrix Protein 1 (Dmp1) and Dentin Sialophosphoprotein (DSPP) Suggest Distinct Developmental Functions in Vivo." Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research, vol. 12, no. 12, 1997, pp. 2040-9.
D'Souza RN, Cavender A, Sunavala G, et al. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res. 1997;12(12):2040-9.
D'Souza, R. N., Cavender, A., Sunavala, G., Alvarez, J., Ohshima, T., Kulkarni, A. B., & MacDougall, M. (1997). Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research, 12(12), pp. 2040-9.
D'Souza RN, et al. Gene Expression Patterns of Murine Dentin Matrix Protein 1 (Dmp1) and Dentin Sialophosphoprotein (DSPP) Suggest Distinct Developmental Functions in Vivo. J Bone Miner Res. 1997;12(12):2040-9. PubMed PMID: 9421236.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. AU - D'Souza,R N, AU - Cavender,A, AU - Sunavala,G, AU - Alvarez,J, AU - Ohshima,T, AU - Kulkarni,A B, AU - MacDougall,M, PY - 1998/1/8/pubmed PY - 1998/1/8/medline PY - 1998/1/8/entrez SP - 2040 EP - 9 JF - Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research JO - J. Bone Miner. Res. VL - 12 IS - 12 N2 - Although the precise mechanisms of the conversion of predentin to dentin are not well understood, several lines of evidence implicate the noncollagenous proteins (NCPs) as important regulators of dentin biomineralization. Here we compared the in vivo temporospatial expression patterns of two dentin NCP genes, dentin matrix protein 1 (Dmp1), and dentin sialophosphoprotein (DSPP) in developing molars. Reverse transcription-polymerase chain reaction was performed on embryonic day 13 to 1-day-old first molars using Dmp1- and DSPP-specific primer sets. Dmp1 transcripts appeared at the late bud stage, while DSPP mRNA was seen at the cap stage. Expression of both genes was sustained throughout odontogenesis. In situ hybridization analysis revealed interesting differences in the expression patterns of these genes. While Dmp1 and DSPP showed coexpression in young odontoblasts before the start of mineralization, the expression of these genes was notably distinct at later stages. Dmp1 expression decreased in secretory odontoblasts after the appearance of mineral, while high levels of DSPP were sustained in odontoblasts. In early secretory ameloblasts, DSPP expression was transient and down-regulated with the appearance ofdentin matrix. Interestingly, Dmp1 expression became evident in ameloblasts during the maturative phase of amelogenesis. In contrast to Dspp expression that was tooth-specific, Dmp1 was expressed by osteoblasts throughout ossification in the skeleton. Probes directed to the "DSP" and "DPP" regions of the DSPP gene showed identical patterns of mRNA expression. These data show that the developmental expression patterns of Dmp1 and DSPP are distinct, implying that these molecules serve different biological functions in vivo. SN - 0884-0431 UR - https://www.unboundmedicine.com/medline/citation/9421236/Gene_expression_patterns_of_murine_dentin_matrix_protein_1__Dmp1__and_dentin_sialophosphoprotein__DSPP__suggest_distinct_developmental_functions_in_vivo_ L2 - https://doi.org/10.1359/jbmr.1997.12.12.2040 DB - PRIME DP - Unbound Medicine ER -