Tags

Type your tag names separated by a space and hit enter

Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed.
Br J Pharmacol. 1998 Apr; 123(8):1700-6.BJ

Abstract

1. We have used the isolated, buffer-perfused, superior mesenteric arterial bed of male and female rats to assess the relative contributions of nitric oxide (NO) and the endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxations to carbachol. 2. Carbachol caused dose-related relaxations of methoxamine-induced tone in mesenteric vascular beds from male rats described by an ED50(M) of 0.43+/-0.15 nmol and a maximum relaxation (Rmax(M) of 89.6+/-1.2% (n=28) which were not significantly different from those observed in mesenteries from female rats (ED50(F)=0.72+/-0.19 nmol and Rax(F)=90.7+/-0.9%; n=22). 3. In the males, the addition of 100 microM NG-nitro-L-arginine methyl ester (L-NAME) caused the dose-response curve to carbachol to be significantly (P<0.001) shifted to the right 15 fold (ED50(M)=6.45+/-3.53 nmol) and significantly (P<0.01) reduced Rmax(M) (79.7+/-2.8%, n=13). By contrast, L-NAME had no effect on vasorelaxation to carbachol in mesenteries from female rats (ED50(f)= 0.89+/-0.19 nmol, Rmax(F)=86.9+/-2.3%, n=9). 4. Raising tone with 60 mM KCl significantly reduced the maximum relaxation to carbachol in mesenteries from male rats 2 fold (Rmax(M)=40.3+/-9.2%, n=4; P<0.001) and female rats by 1.5 fold (Rmax(F)=55.3+/-3.3%, n=6; P<0.001), compared with methoxamine-induced tone. The potency of carbachol was also significantly reduced 1.2 fold in preparations from males (ED50(M)=0.87+/-0.26 nmol; P<0.01) but not the females (ED50(F)=4.04+/-1.46 nmol). In the presence of both 60 mM KCl and L-NAME, the vasorelaxation to carbachol was completely abolished in mesenteries from both groups. 5. The cannabinoid receptor antagonist SR141716A (1 microM), which is also a putative EDHF antagonist, had no significant effect on the responses to carbachol in mesenteries from males or females (ED50(M)=1.41+/-0.74 nmol, Rmax(M)=89.4+/-2.5%, n=7; ED50(F)=2.17+/-0.95 nmol, Rmax(F)=89.9+/-1.8%, n=9). In mesenteries from male rats, in the presence of 100 microM L-NAME, SR141716A significantly (P<0.05) shifted the dose-response curve to carbachol 8 fold further to the right than that seen in the presence of L-NAME alone (ED50(M)= 53.8+/-36.8 nmol) without affecting Rmax(M) (72.4+/-4.8%, n=10). In mesenteries from female rats, the combined presence of L-NAME and SR141716A, significantly (P < 0.01) shifted the dose-response curve to carbachol 7.5 fold, (ED50(F)=6.66+/-2.46 nmol), as compared to L-NAME alone and significantly (P<0.001) decreased Rmax(F) (70.1+/-5.5%, n=8). 6. Vasorelaxations to the nitric oxide donor sodium nitroprusside (SNP), to the endogenous cannabinoid, anandamide (a putative EDHF) and to the ATP-sensitive potassium channel activator, levcromakalim, did not differ significantly between male and female mesenteric vascular beds. 7. The continuous presence of sodium nitroprusside (SNP; 20-60 nM) had no effect on vasorelaxation to carbachol in mesenteries from either males or females. In the presence of L-NAME, SNP significantly (P<0.05) reduced the potency of carbachol 6 fold, without affecting the maximal relaxation in mesenteries from male rats (ED50(M)=40.9+/-19.6 nmol, Rmax(M)=79.4+/-2.5%, n=11). Similarly in mesenteries from female rats, the ED50(F) was also significantly (P<0.01) increased 7 fold (6.24+/-2.02 nmol), while the Rmax(F) was unaffected (81.9+/-11.0%; n=4). 8 The results of the present investigation demonstrate that the relative contributions of agonist-stimulated NO and EDHF to endothelium-dependent relaxations in the rat isolated mesenteric arterial bed, differ between males and females. Specifically, although both NO and EDHF appear to contribute towards endothelium-dependent relaxations in males and females, blockade of NO synthesis alone has no effect in the female. This suggests that EDHF is functionally more important in females; one possible explanation for this is that in the absence of NO, the recently identified ability of EDHF to compensate for the loss of NO, is functio

Authors+Show Affiliations

Department of Physiology and Pharmacology, University of Nottingham Medical School, Queen's Medical Centre.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

9605578

Citation

McCulloch, A I., and M D. Randall. "Sex Differences in the Relative Contributions of Nitric Oxide and EDHF to Agonist-stimulated Endothelium-dependent Relaxations in the Rat Isolated Mesenteric Arterial Bed." British Journal of Pharmacology, vol. 123, no. 8, 1998, pp. 1700-6.
McCulloch AI, Randall MD. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. Br J Pharmacol. 1998;123(8):1700-6.
McCulloch, A. I., & Randall, M. D. (1998). Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. British Journal of Pharmacology, 123(8), 1700-6.
McCulloch AI, Randall MD. Sex Differences in the Relative Contributions of Nitric Oxide and EDHF to Agonist-stimulated Endothelium-dependent Relaxations in the Rat Isolated Mesenteric Arterial Bed. Br J Pharmacol. 1998;123(8):1700-6. PubMed PMID: 9605578.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. AU - McCulloch,A I, AU - Randall,M D, PY - 1998/5/30/pubmed PY - 1998/5/30/medline PY - 1998/5/30/entrez SP - 1700 EP - 6 JF - British journal of pharmacology JO - Br J Pharmacol VL - 123 IS - 8 N2 - 1. We have used the isolated, buffer-perfused, superior mesenteric arterial bed of male and female rats to assess the relative contributions of nitric oxide (NO) and the endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxations to carbachol. 2. Carbachol caused dose-related relaxations of methoxamine-induced tone in mesenteric vascular beds from male rats described by an ED50(M) of 0.43+/-0.15 nmol and a maximum relaxation (Rmax(M) of 89.6+/-1.2% (n=28) which were not significantly different from those observed in mesenteries from female rats (ED50(F)=0.72+/-0.19 nmol and Rax(F)=90.7+/-0.9%; n=22). 3. In the males, the addition of 100 microM NG-nitro-L-arginine methyl ester (L-NAME) caused the dose-response curve to carbachol to be significantly (P<0.001) shifted to the right 15 fold (ED50(M)=6.45+/-3.53 nmol) and significantly (P<0.01) reduced Rmax(M) (79.7+/-2.8%, n=13). By contrast, L-NAME had no effect on vasorelaxation to carbachol in mesenteries from female rats (ED50(f)= 0.89+/-0.19 nmol, Rmax(F)=86.9+/-2.3%, n=9). 4. Raising tone with 60 mM KCl significantly reduced the maximum relaxation to carbachol in mesenteries from male rats 2 fold (Rmax(M)=40.3+/-9.2%, n=4; P<0.001) and female rats by 1.5 fold (Rmax(F)=55.3+/-3.3%, n=6; P<0.001), compared with methoxamine-induced tone. The potency of carbachol was also significantly reduced 1.2 fold in preparations from males (ED50(M)=0.87+/-0.26 nmol; P<0.01) but not the females (ED50(F)=4.04+/-1.46 nmol). In the presence of both 60 mM KCl and L-NAME, the vasorelaxation to carbachol was completely abolished in mesenteries from both groups. 5. The cannabinoid receptor antagonist SR141716A (1 microM), which is also a putative EDHF antagonist, had no significant effect on the responses to carbachol in mesenteries from males or females (ED50(M)=1.41+/-0.74 nmol, Rmax(M)=89.4+/-2.5%, n=7; ED50(F)=2.17+/-0.95 nmol, Rmax(F)=89.9+/-1.8%, n=9). In mesenteries from male rats, in the presence of 100 microM L-NAME, SR141716A significantly (P<0.05) shifted the dose-response curve to carbachol 8 fold further to the right than that seen in the presence of L-NAME alone (ED50(M)= 53.8+/-36.8 nmol) without affecting Rmax(M) (72.4+/-4.8%, n=10). In mesenteries from female rats, the combined presence of L-NAME and SR141716A, significantly (P < 0.01) shifted the dose-response curve to carbachol 7.5 fold, (ED50(F)=6.66+/-2.46 nmol), as compared to L-NAME alone and significantly (P<0.001) decreased Rmax(F) (70.1+/-5.5%, n=8). 6. Vasorelaxations to the nitric oxide donor sodium nitroprusside (SNP), to the endogenous cannabinoid, anandamide (a putative EDHF) and to the ATP-sensitive potassium channel activator, levcromakalim, did not differ significantly between male and female mesenteric vascular beds. 7. The continuous presence of sodium nitroprusside (SNP; 20-60 nM) had no effect on vasorelaxation to carbachol in mesenteries from either males or females. In the presence of L-NAME, SNP significantly (P<0.05) reduced the potency of carbachol 6 fold, without affecting the maximal relaxation in mesenteries from male rats (ED50(M)=40.9+/-19.6 nmol, Rmax(M)=79.4+/-2.5%, n=11). Similarly in mesenteries from female rats, the ED50(F) was also significantly (P<0.01) increased 7 fold (6.24+/-2.02 nmol), while the Rmax(F) was unaffected (81.9+/-11.0%; n=4). 8 The results of the present investigation demonstrate that the relative contributions of agonist-stimulated NO and EDHF to endothelium-dependent relaxations in the rat isolated mesenteric arterial bed, differ between males and females. Specifically, although both NO and EDHF appear to contribute towards endothelium-dependent relaxations in males and females, blockade of NO synthesis alone has no effect in the female. This suggests that EDHF is functionally more important in females; one possible explanation for this is that in the absence of NO, the recently identified ability of EDHF to compensate for the loss of NO, is functio SN - 0007-1188 UR - https://www.unboundmedicine.com/medline/citation/9605578/Sex_differences_in_the_relative_contributions_of_nitric_oxide_and_EDHF_to_agonist_stimulated_endothelium_dependent_relaxations_in_the_rat_isolated_mesenteric_arterial_bed_ L2 - https://doi.org/10.1038/sj.bjp.0701781 DB - PRIME DP - Unbound Medicine ER -