Tags

Type your tag names separated by a space and hit enter

Over-expression of glutathione S-transferase Yp isozyme and concomitant down-regulation of Ya isozyme in renal cell carcinoma of rats induced by ferric nitrilotriacetate.
Carcinogenesis. 1998 May; 19(5):897-903.C

Abstract

An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces renal proximal tubular damage, a consequence of iron-catalysed Fenton-like reactions, that finally leads to a high incidence of renal cell carcinoma (RCC) in rodents. Glutathione S-transferase (GST) is a family of enzymes that play an important role in detoxification of hydrophobic and electrophilic molecules, and has been associated with putative preneoplastic foci of rat hepatocarcinogenesis and chemotherapy-resistance of human cancers. Our previous study revealed an induction of pi-class glutathione S-transferase (Yp) mRNA in the kidney 3 h after administration of Fe-NTA. In the present study, expression of GST isozymes were further investigated in the Fe-NTA-induced RCCs of rats which are characterized by (1) high incidence of metastasis and invasion, (2) high incidence of tumour-associated mortality, and (3) possible involvement of reactive oxygen species in carcinogenesis. In the Fe-NTA-induced RCCs, the levels of alpha-class GST (Ya) mRNA and proteins were markedly decreased with no apparent change in the copy number of the gene. In contrast, GST-Yp mRNA and proteins were significantly increased in the RCCs while the total GST enzymatic activity was decreased. Immunohistochemical analysis revealed intense staining of GST-Yp not only in the primary RCCs and its metastatic sites, but also in their non-tumorous part of proximal tubules. The contrastive expression of GST isozymes in this renal carcinogenesis model suggests an alteration of its transcription mechanisms and warrants further investigation of this particular detoxifying enzyme from the viewpoint of reactive oxygen species-induced carcinogenesis.

Authors+Show Affiliations

Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

9635880

Citation

Tanaka, T, et al. "Over-expression of Glutathione S-transferase Yp Isozyme and Concomitant Down-regulation of Ya Isozyme in Renal Cell Carcinoma of Rats Induced By Ferric Nitrilotriacetate." Carcinogenesis, vol. 19, no. 5, 1998, pp. 897-903.
Tanaka T, Nishiyama Y, Okada K, et al. Over-expression of glutathione S-transferase Yp isozyme and concomitant down-regulation of Ya isozyme in renal cell carcinoma of rats induced by ferric nitrilotriacetate. Carcinogenesis. 1998;19(5):897-903.
Tanaka, T., Nishiyama, Y., Okada, K., Satoh, K., Fukuda, A., Uchida, K., Osawa, T., Hiai, H., & Toyokuni, S. (1998). Over-expression of glutathione S-transferase Yp isozyme and concomitant down-regulation of Ya isozyme in renal cell carcinoma of rats induced by ferric nitrilotriacetate. Carcinogenesis, 19(5), 897-903.
Tanaka T, et al. Over-expression of Glutathione S-transferase Yp Isozyme and Concomitant Down-regulation of Ya Isozyme in Renal Cell Carcinoma of Rats Induced By Ferric Nitrilotriacetate. Carcinogenesis. 1998;19(5):897-903. PubMed PMID: 9635880.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Over-expression of glutathione S-transferase Yp isozyme and concomitant down-regulation of Ya isozyme in renal cell carcinoma of rats induced by ferric nitrilotriacetate. AU - Tanaka,T, AU - Nishiyama,Y, AU - Okada,K, AU - Satoh,K, AU - Fukuda,A, AU - Uchida,K, AU - Osawa,T, AU - Hiai,H, AU - Toyokuni,S, PY - 1998/7/11/pubmed PY - 1998/7/11/medline PY - 1998/7/11/entrez SP - 897 EP - 903 JF - Carcinogenesis JO - Carcinogenesis VL - 19 IS - 5 N2 - An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces renal proximal tubular damage, a consequence of iron-catalysed Fenton-like reactions, that finally leads to a high incidence of renal cell carcinoma (RCC) in rodents. Glutathione S-transferase (GST) is a family of enzymes that play an important role in detoxification of hydrophobic and electrophilic molecules, and has been associated with putative preneoplastic foci of rat hepatocarcinogenesis and chemotherapy-resistance of human cancers. Our previous study revealed an induction of pi-class glutathione S-transferase (Yp) mRNA in the kidney 3 h after administration of Fe-NTA. In the present study, expression of GST isozymes were further investigated in the Fe-NTA-induced RCCs of rats which are characterized by (1) high incidence of metastasis and invasion, (2) high incidence of tumour-associated mortality, and (3) possible involvement of reactive oxygen species in carcinogenesis. In the Fe-NTA-induced RCCs, the levels of alpha-class GST (Ya) mRNA and proteins were markedly decreased with no apparent change in the copy number of the gene. In contrast, GST-Yp mRNA and proteins were significantly increased in the RCCs while the total GST enzymatic activity was decreased. Immunohistochemical analysis revealed intense staining of GST-Yp not only in the primary RCCs and its metastatic sites, but also in their non-tumorous part of proximal tubules. The contrastive expression of GST isozymes in this renal carcinogenesis model suggests an alteration of its transcription mechanisms and warrants further investigation of this particular detoxifying enzyme from the viewpoint of reactive oxygen species-induced carcinogenesis. SN - 0143-3334 UR - https://www.unboundmedicine.com/medline/citation/9635880/Over_expression_of_glutathione_S_transferase_Yp_isozyme_and_concomitant_down_regulation_of_Ya_isozyme_in_renal_cell_carcinoma_of_rats_induced_by_ferric_nitrilotriacetate_ L2 - https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/19.5.897 DB - PRIME DP - Unbound Medicine ER -