Tags

Type your tag names separated by a space and hit enter

Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion.
Chem Res Toxicol. 1999 Jan; 12(1):83-92.CR

Abstract

Reactive nitrogen species derived from nitric oxide are potent oxidants formed during inflammation that can oxidize membrane and lipoprotein lipids in vivo. Herein, it is demonstrated that several of these species react with unsaturated fatty acid to yield nitrated oxidation products. Using HPLC coupled with both UV detection and electrospray ionization mass spectrometry, products of reaction of ONOO- with linoleic acid displayed mass/charge (m/z) characteristics of LNO2 (at least three products at m/z 324, negative ion mode). Further analysis by MS/MS gave a major fragment at m/z 46. Addition of a NO2 group was confirmed using [15N]ONOO- which gave a product at m/z 325, fragmenting to form a daughter ion at m/z 47. Formation of nitrated lipids was inhibited by bicarbonate, superoxide dismutase (SOD), and Fe3+-EDTA, while the yield of oxidation products was decreased by bicarbonate and SOD, but not by Fe3+-EDTA. Reaction of linoleic acid with both nitrogen dioxide (*NO2) or nitronium tetrafluoroborate (NO2BF4) also yielded nitrated lipid products (m/z 324), with HPLC retention times and MS/MS fragmentation patterns identical to the m/z 324 species formed by reaction of ONOO- with linoleic acid. Finally, reaction of HPODE, but not linoleate, with nitrous acid (HONO) or isobutyl nitrite (BuiONO) yielded a product at m/z 340, or 341 upon reacting with [15N]HONO. MS/MS analysis gave an NO2- fragment, and 15N NMR indicated that the product contained a nitro (RNO2) functional group, suggesting that the product was nitroepoxylinoleic acid [L(O)NO2]. This species could form via homolytic dissociation of LOONO to LO* and *NO2 and rearrangement of LO* to an epoxyallylic radical L(O)* followed by recombination of L(O)* with *NO2. Since unsaturated lipids of membranes and lipoproteins are critical targets of reactive oxygen and nitrogen species, these pathways lend insight into mechanisms for the formation of novel nitrogen-containing lipid products in vivo and provide synthetic strategies for further structural and functional studies.

Authors+Show Affiliations

Department of Anesthesiology, University of Alabama at Birmingham, 35233, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.

Language

eng

PubMed ID

9894022

Citation

O'Donnell, V B., et al. "Nitration of Unsaturated Fatty Acids By Nitric Oxide-derived Reactive Nitrogen Species Peroxynitrite, Nitrous Acid, Nitrogen Dioxide, and Nitronium Ion." Chemical Research in Toxicology, vol. 12, no. 1, 1999, pp. 83-92.
O'Donnell VB, Eiserich JP, Chumley PH, et al. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol. 1999;12(1):83-92.
O'Donnell, V. B., Eiserich, J. P., Chumley, P. H., Jablonsky, M. J., Krishna, N. R., Kirk, M., Barnes, S., Darley-Usmar, V. M., & Freeman, B. A. (1999). Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chemical Research in Toxicology, 12(1), 83-92.
O'Donnell VB, et al. Nitration of Unsaturated Fatty Acids By Nitric Oxide-derived Reactive Nitrogen Species Peroxynitrite, Nitrous Acid, Nitrogen Dioxide, and Nitronium Ion. Chem Res Toxicol. 1999;12(1):83-92. PubMed PMID: 9894022.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. AU - O'Donnell,V B, AU - Eiserich,J P, AU - Chumley,P H, AU - Jablonsky,M J, AU - Krishna,N R, AU - Kirk,M, AU - Barnes,S, AU - Darley-Usmar,V M, AU - Freeman,B A, PY - 1999/1/20/pubmed PY - 1999/1/20/medline PY - 1999/1/20/entrez SP - 83 EP - 92 JF - Chemical research in toxicology JO - Chem Res Toxicol VL - 12 IS - 1 N2 - Reactive nitrogen species derived from nitric oxide are potent oxidants formed during inflammation that can oxidize membrane and lipoprotein lipids in vivo. Herein, it is demonstrated that several of these species react with unsaturated fatty acid to yield nitrated oxidation products. Using HPLC coupled with both UV detection and electrospray ionization mass spectrometry, products of reaction of ONOO- with linoleic acid displayed mass/charge (m/z) characteristics of LNO2 (at least three products at m/z 324, negative ion mode). Further analysis by MS/MS gave a major fragment at m/z 46. Addition of a NO2 group was confirmed using [15N]ONOO- which gave a product at m/z 325, fragmenting to form a daughter ion at m/z 47. Formation of nitrated lipids was inhibited by bicarbonate, superoxide dismutase (SOD), and Fe3+-EDTA, while the yield of oxidation products was decreased by bicarbonate and SOD, but not by Fe3+-EDTA. Reaction of linoleic acid with both nitrogen dioxide (*NO2) or nitronium tetrafluoroborate (NO2BF4) also yielded nitrated lipid products (m/z 324), with HPLC retention times and MS/MS fragmentation patterns identical to the m/z 324 species formed by reaction of ONOO- with linoleic acid. Finally, reaction of HPODE, but not linoleate, with nitrous acid (HONO) or isobutyl nitrite (BuiONO) yielded a product at m/z 340, or 341 upon reacting with [15N]HONO. MS/MS analysis gave an NO2- fragment, and 15N NMR indicated that the product contained a nitro (RNO2) functional group, suggesting that the product was nitroepoxylinoleic acid [L(O)NO2]. This species could form via homolytic dissociation of LOONO to LO* and *NO2 and rearrangement of LO* to an epoxyallylic radical L(O)* followed by recombination of L(O)* with *NO2. Since unsaturated lipids of membranes and lipoproteins are critical targets of reactive oxygen and nitrogen species, these pathways lend insight into mechanisms for the formation of novel nitrogen-containing lipid products in vivo and provide synthetic strategies for further structural and functional studies. SN - 0893-228X UR - https://www.unboundmedicine.com/medline/citation/9894022/Nitration_of_unsaturated_fatty_acids_by_nitric_oxide_derived_reactive_nitrogen_species_peroxynitrite_nitrous_acid_nitrogen_dioxide_and_nitronium_ion_ DB - PRIME DP - Unbound Medicine ER -