The effects of Ba2+ on current resulting from the heterologous expression of the human ether-à-go-go related gene (HERG) (IHERG) was studied with two-electrode voltage clamp techniques in Xenopus oocytes. Ba2+ produced time- and voltage-dependent block of IHERG. Significant inhibition was seen at concentrations as low as 1 microM. Inhibition was greatest at step potentials between -40 and 0 mV; at more positive potentials, inhibition decreased in association with time-dependent unblocking of channels. An inactivation-attenuated mutant of HERG (S631A) was prepared and expressed in Xenopus oocytes. Ba2+ block of S631A differed from that of HERG in that extensive unblocking was no longer seen at positive potentials and the voltage dependence of step current block was greatly attenuated. A mathematical model was applied to analyse quantitatively the inhibitory effects of Ba2+ on IHERG. The model suggested similar voltage-dependent affinity of Ba2+ for the open and closed states, along with absence of binding to the inactivated state, and accounted well for Ba2+ effects on both wild-type and S631A channels. We conclude that Ba2+ potently inhibits IHERG in a characteristic state-dependent fashion, with strong unblocking at positive potentials related to the presence of an intact C-type inactivation mechanism.