Substitution for PCP, disruption of prepulse inhibition and hyperactivity induced by N-methyl-D-aspartate receptor antagonists: preferential involvement of the NR2B rather than NR2A subunit.
Behav Pharmacol. 2003 Sep; 14(5-6):477-87.BP

Abstract

The non-competitive NMDA receptor antagonist phencyclidine (PCP) is known to produce a discriminative stimulus in rats. The first aim of the present study was to investigate which NMDA receptor subtype(s) is involved in this effect of PCP. Rats were trained to discriminate PCP (2 mg/kg; i.p.) from saline in a two lever operant task. The NMDA channel blocker, (+)MK-801 (0.1 mg/kg; i.p.) and the competitive NMDA receptor antagonist SDZ 220-581 (3 mg/kg; i.p.) produced 76% of PCP-lever selection (ED50=0.045 and 2 mg/kg, respectively), whereas their respective inactive enantiomers (-)MK-801 (0.025-0.1 mg/kg) and SDZ 221-653 (2-5 mg/kg) induced less than 30% of PCP-appropriate responding. Another competitive NMDA antagonist, SDZ EAB-515 (30 mg/kg; i.p.), induced 63% of PCP-lever responding (ED50=23.48 mg/kg). The selective antagonist of NMDA receptors containing the NR1A/NR2B-subunits Ro 25-6981 (20 mg/kg; i.p.) resulted in a complete substitution (more than 80% of PCP-lever selection) for PCP (ED50=8.59 mg/kg). In contrast, the NR1A/NR2A NMDA receptor-preferring antagonist NVP-AAM077 (2-10 mg/kg; i.p.) failed to produce PCP-like discriminative stimuli. At high doses SDZ 220-581 (ED50=2.44), NVP-AAM077 (ED50=8.33) and SDZ EAB-515 (ED50=25.81) decreased the performance of the rats in this operant task. The ability of these NMDA receptor antagonists to disrupt the prepulse inhibition (PPI) of the startle response and to alter locomotor activity was also studied. PCP (0.5-2 mg/kg; s.c.), SDZ 220-581 (0.5-5 mg/kg; s.c.), SDZ EAB-515 (1-30 mg/kg; i.p.) and Ro 25-6981 (5-20 mg/kg; i.p.) disrupted PPI and at high doses produced hyperlocomotion. In contrast, NVP-AAM077 (5-20 mg/kg; i.p.) did not disrupt PPI and reduced locomotor activity. In conclusion, it appears that the NMDA receptor containing the NR2B, rather than the NR2A subunit, may play a major role in the PCP-like discriminative stimulus. In addition, sensory motor gating disturbances associated with NMDA antagonists do not seem to result from a blockade of NR1/NR2A-containing NMDA receptors.

Links

Publisher Full Text
Aggregator Full Text

Authors+Show Affiliations

Chaperon F
Novartis Pharma AG, Nervous System Research, Basel, Switzerland. frederique.chaperon@pharma.novartis.com
Müller W
No affiliation info available
Auberson YP
No affiliation info available
Tricklebank MD
No affiliation info available
Neijt HC
No affiliation info available

MeSH

AnimalsConditioning, OperantDiscrimination LearningExcitatory Amino Acid AntagonistsHallucinogensLocomotionMalePhencyclidineRatsRats, WistarReceptors, N-Methyl-D-Aspartate

Pub Type(s)

Journal Article

Language

eng

PubMed ID

14501261