Orai1 and STIM reconstitute store-operated calcium channel function.
J Biol Chem. 2006 Jul 28; 281(30):20661-5.JB

Abstract

The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca(2+) entry (SOCE) in human embryonic kidney 293 cells and the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukemia cells. However, expressed along with the store-sensing STIM1 protein, Orai1 causes a massive increase in SOCE, enhancing the rate of Ca(2+)entry by up to 103-fold. This entry is entirely store-dependent since the same coexpression causes no measurable store-independent Ca(2+) entry. The entry is completely blocked by the SOC blocker, 2-aminoethoxydiphenylborate. Orai1 and STIM1 coexpression also caused a large gain in CRAC channel function in rat basophilic leukemia cells. The close STIM1 homologue, STIM2, inhibited SOCE when expressed alone but coexpressed with Orai1 caused substantial constitutive (store-independent) Ca(2+) entry. STIM proteins are known to mediate Ca(2+) store-sensing and endoplasmic reticulum-plasma membrane coupling with no intrinsic channel properties. Our results revealing a powerful gain in SOC function dependent on the presence of both Orai1 and STIM1 strongly suggest that Orai1 contributes the PM channel component responsible for Ca(2+) entry. The suppression of SOC function by Orai1 overexpression likely reflects a required stoichiometry between STIM1 and Orai1.

Links

Publisher Full Text

Authors+Show Affiliations

Soboloff J
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, 21201, USA.
Spassova MA
No affiliation info available
Tang XD
No affiliation info available
Hewavitharana T
No affiliation info available
Xu W
No affiliation info available
Gill DL
No affiliation info available

MeSH

AnimalsBoron CompoundsCalciumCalcium ChannelsCell Adhesion MoleculesCell LineCell Line, TumorCell MembraneElectrophysiologyEndoplasmic ReticulumHumansMembrane ProteinsModels, BiologicalNeoplasm ProteinsORAI1 ProteinRatsStromal Interaction Molecule 1Stromal Interaction Molecule 2

Pub Type(s)

Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

16766533