To examine whether short-term exogenous activation of a tongue muscle induced a phenotypic shift from a fast to a slow fibre-type, and thus assess a potential therapeutic avenue to protect against obstructive sleep apnoea (OSA).
New Zealand White rabbit genioglossus (GG) muscle, characteristically a fast muscle, was continuously stimulated at a frequency attributed to slow muscle (10Hz, 3V DC pulses) using an implanted micro-circuit for 7 days. Changes in muscle fibre types and aerobic capacity were assessed between stimulated and un-stimulated (control) groups using immunohistochemistry and electrophoresis for myosin heavy chain (MHC) and assayed for citrate synthase.
Compared to the un-stimulated control group, stimulated GG muscles had more (approximately 13%) type I MHC (slow-twitch) content; a proportional decrease in type II MHC (fast-twitch) isoform also occurred in the stimulated GG muscle (P<0.05). Electrophoresis analysis on whole muscle and single fibre MHC showed an increased type I expression in the stimulated GG muscle (P<0.01). A commensurate rise in citrate synthase activity, indicating a change in aerobic capacity, was also observed in the stimulated GG muscles.
Together, these results demonstrate a successful alteration in tongue muscle characteristics using exogenous electrical stimulation and perhaps a potential therapeutic application for OSA.