Interdependent regulation of afferent renal nerve activity and renal function: role of transient receptor potential vanilloid type 1, neurokinin 1, and calcitonin gene-related peptide receptors.
J Pharmacol Exp Ther. 2008 Jun; 325(3):751-7.JP

Abstract

Our previous studies have shown that the activation of the transient receptor potential vanilloid type 1 (TRPV1) expressed in the renal pelvis leads to an increase in ipsilateral afferent renal nerve activity (ARNA) and contralateral renal excretory function, but the molecular mechanisms of TRPV1 action are largely unknown. This study tests the hypothesis that activation of receptors of neurokinin 1 (NK1) or calcitonin gene-related peptide (CGRP) by endogenously released substance P (SP) or CGRP following TRPV1 activation, respectively, governs TRPV1-induced increases in ARNA and renal excretory function. Capsaicin (CAP; 0.04, 0.4, and 4 nM), a selective TRPV1 agonist, administered into the renal pelvis dose-dependently increased ARNA. CAP (4 nM)-induced increases in ipsilateral ARNA or contralateral urine flow rate (Uflow) and urinary sodium excretion (UNa) were abolished by capsazepine (CAPZ), a selective TRPV1 antagonist, or 2-[1-imino-2-(2-methoxyphenyl)ethyl]-7,7-diphenyl-4-perhydroisoindolone (3aR,7aR) (RP67580) or cis-2-(diphenylmethyl)-N-[(2-iodophenyl)-methyl]-1 azabicyclo[2.2.2]octan-3-amine (L703,606), selective NK1 antagonists, but not by CGRP8-37, a selective CGRP receptor antagonist. Both SP (7.4 nM) and CGRP (0.13 muM) increased ARNA, Uflow, or UNa, and increases in these parameters induced by CGRP but not SP were abolished by CAPZ. CAP at 4 nM perfused into the renal pelvis caused the release of SP and CGRP, which was blocked by CAPZ but not by RP67580, L703,606, or CGRP8-37. Immunofluorescence results showed that NK1 receptors were expressed in sensory neurons in dorsal root ganglion and sensory nerve fibers innervating the renal pelvis. Taken together, our data indicate that NK1 activation induced by SP release upon TRPV1 activation governs TRPV1 function and that a TRPV1-dependent mechanism is operant in CGRP action.

Links

Publisher Full Text
ncbi.nlm.nih.gov
jpet.aspetjournals.org
PMC Free PDF

Authors+Show Affiliations

Xie C
Department of Medicine, Michigan State University, East Lansing, MI 48824, USA.
Sachs JR
No affiliation info available
Wang DH
No affiliation info available

MeSH

AnimalsBlood PressureCalcitonin Gene-Related PeptideCalcitonin Gene-Related Peptide Receptor AntagonistsCapsaicinGanglia, SpinalIsoindolesKidney PelvisMaleNeurokinin-1 Receptor AntagonistsNeurons, AfferentPeptide FragmentsQuinuclidinesRatsRats, WistarReceptors, Calcitonin Gene-Related PeptideReceptors, Neurokinin-1Substance PTRPV Cation Channels

Pub Type(s)

Journal Article

Language

eng

PubMed ID

18364471