Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis.
Chemosphere. 2017 Dec; 188:139-147.C

Abstract

Electrochemistry coupled with granulated activated carbon catalysis of peroxymonosulfate (electro/GAC/PMS) as a novel wastewater treatment process was performed for the degradation of Acid Orange 7 (AO7) in aqueous solution. The decolorization of AO7 was compared under different permutations and combinations of electro-oxidation, GAC and PMS. It showed that the electro/GAC/PMS process was the most effective and the decolorization of AO7 followed pseudo-first order kinetics. The surface chemistry of GAC samples was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Compared with the fresh samples, π-electron density and hydroxyl group content decreased under the GAC/PMS system, but kept the similar values under the electro/GAC/PMS system. Electron paramagnetic resonance and radical scavenger studies were used to verify the formation of sulfate radicals (SO4-) and hydroxyl radicals (OH). The optimized conditions were found to be: current density 8 mA cm-2; PMS concentration 5 mM; GAC dosage 0.5 g L-1; and initial pH value 5.0. GAC recycling experiments over 4 runs showed some decrease in reactivity. Overall, the results indicate that 100% color removal was readily achieved and 50.4% of TOC was removed which shows high efficiency of the electro/GAC/PMS process.

Links

Publisher Full Text

Authors+Show Affiliations

Li J
Department of Environmental Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China.
Lin H
Department of Environmental Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China.
Zhu K
Department of Environmental Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China.
Zhang H
Department of Environmental Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China. Electronic address: eeng@whu.edu.cn.

MeSH

Azo CompoundsBenzenesulfonatesCatalysisCharcoalElectrolysisHydroxyl RadicalOxidation-ReductionPeroxidesPhotoelectron SpectroscopyRecyclingSulfatesWaste WaterWater Pollutants, ChemicalWater Purification

Pub Type(s)

Journal Article

Language

eng

PubMed ID

28881241