Download the Free Prime PubMed App to your smartphone or tablet.

Available for iPhone or iPad:

Unbound PubMed app for iOS iPhone iPadAlso Available:
Unbound MEDLINE
Unbound PubMed app for Android

Available for Mac and Windows Desktops and laptops:

Unbound PubMed app for WindowsUnbound PubMed app for MAC OS Yosemite Macbook Air pro
(Arsenic poisoning)
3,520 results
  • Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. [Review]
  • PPlanta 2018 May 07
  • Kofroňová M, Mašková P, Lipavská H
  • CONCLUSIONS: This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
  • [Analysis of Arsenic Compounds in Blood and Urine by HPLC-ICP-MS]. [Journal Article]
  • FYFa Yi Xue Za Zhi 2018; 34(1):37-43
  • Lin L, Zhang SJ, … Shen M
  • CONCLUSIONS: This study has established an analysis method for detecting 6 common arsenic compounds in blood and urine, which can be used to detect the arsenic compounds in the blood and urine from arsenic poisoning cases as well as the patients under arsenic treatment.
New Search Next