Download the Free Prime PubMed App to your smartphone or tablet.

Available for iPhone or iPad:

Unbound PubMed app for iOS iPhone iPadAlso Available:
Unbound PubMed app for Android

Available for Mac and Windows Desktops and laptops:

Unbound PubMed app for WindowsUnbound PubMed app for MAC OS Yosemite Macbook Air pro
313,865 results
  • Metabolite signatures of grasspea suspension-cultured cells illustrate the complexity of dehydration response. [Journal Article]
  • PPlanta 2019 Jun 15
  • Rathi D, Pareek A, … Chakraborty N
  • CONCLUSIONS: This represents the first report deciphering the dehydration response of suspension-cultured cells of a crop species, highlighting unique and shared pathways, and adaptive mechanisms via profiling of 330 metabolites. Grasspea, being a hardy legume, is an ideal model system to study stress tolerance mechanisms in plants. In this study, we investigated the dehydration-responsive metabolome in grasspea suspension-cultured cells (SCCs) to identify the unique and shared metabolites crucial in imparting dehydration tolerance. To reveal the dehydration-induced metabolite signatures, SCCs of grasspea were exposed to 10% PEG, followed by metabolomic profiling. Chromatographic separation by HPLC coupled with MRM-MS led to the identification of 330 metabolites, designated dehydration-responsive metabolites (DRMs), which belonged to 28 varied functional classes. The metabolome was found to be constituted by carboxylic acids (17%), amino acids (13.5%), flavonoids (10.9%) and plant growth regulators (10%), among others. Pathway enrichment analysis revealed predominance of metabolites involved in phytohormone biosynthesis, secondary metabolism and osmotic adjustment. Exogenous application of DRMs, arbutin and acetylcholine, displayed improved physiological status in stress-resilient grasspea as well as hypersensitive pea, while administration of lauric acid imparted detrimental effects. This represents the first report on stress-induced metabolomic landscape of a crop species via a suspension culture system, which would provide new insights into the molecular mechanism of stress responses and adaptation in crop species.
  • Facial Donor Restoration: One-Step Technique. [Journal Article]
  • JOJ Oral Maxillofac Surg 2019 May 21
  • Hurtado-Ruzza H, Fajardo PS, … García-García A
  • CONCLUSIONS: The presented one-step technique proposed for facial restoration of the DC had a short learning curve, low costs, and accurate and predictable results.
New Search Next